Tabelle 3.23.	Ergebnis der Partikelzünddurchschlagversuche in Brenngas/Luft-Gemischen (w = 0.1 bzw. 0.3 mm, U = 545 V, I = 2.5 - 5 kA)	67
Tabelle 3.24	Löschabstände w_{max} für den Zünddurchschlag von Brenngasen durch Spalte zwischen parallelen Flächen Zündbehälter $V_1 \sim 100~\text{cm}^3$. Zündortlage: Spalthöhe	72
Tabelle 3.25.	Gruppeneinteilung von Brenngasen und brennbaren Dämpfen nach der Normspaltweite w _n	74
Tabelle 3.26.	Propan: Einfluss des Zündortes und der Gemischturbulenz auf die zünddurchschlagsichere Spaltweite w_s und die zünddurchschlagwilligste Konzentration c_z (E = 10/250 J)	84
Tabelle 3.27	Zusammenhang zwischen dem Bohrungsdurchmesser d_B und der sicheren Bohrungslänge für das zünddurchschlagwilligste Methan/Luft-Gemisch (Zündgehäuse V_1 = 0.2l, Zweitgehäuse V_2 = 6l)	86
Tabelle 3.28.	Löschabstände d_{max} für den Zünddurchschlag von Brenngasen durch Rohre (Zündgehäuse V_1 = 0.2l, Zweitgehäuse V_2 = 0.4l)	87
Tabelle 3.29.	Löschabstände d _{K,max} für den Zünddurchschlag von Brenngasen durch kugelförmige Schichtgüter	94
Tabelle 3.30.	Kenngrössen der Verbrennungsgase von Methan im Aussengemisch bei eben sicheren Flammensperren (Zündgehäuse: 0.8I)	101
Tabelle 3.31.	Sicherheitsfaktoren fs von Plattenschutzpaketen unterschiedlicher Spaltweite w gegenüber Methan- explosionen (Spaltlänge I = 50 mm)	114
Tabelle 3.32.	Mindestlänge I von Rohrleitungen vor Detonationssicherungen DN zur Nachbrandvermei- dung	118
Tabelle 3.33.	Rohrleitung DN 1400: Spezifischer Löschpulverbedarf in Abhängigkeit von der Art der Löschpulvereingabe und Löschmittelbehälterbefüllung (5I-LM-Behälter mit einem $3/4$ "-Ventil, p_{N2} = 60 bar, NaHCO3-Löschpulver)	140
Tabelle 3.34.	Rohrleitung DN 1400: Einfluss der Art des Löschmittels auf den spezifischen Löschmittelbedarf (5I-LM-Behälter (unterfüllt) mit einem $3/4$ "-Ventil, $p_{N2} = 60$ bar, Fächerdüse)	142
Tabelle 3.35.	Rohrleitung DN 2500: Einfluss der Explosions- geschwindigkeit v _{ex} , _{Sperre} auf spezifischen Lösch-	

Günther Pellmont

Spezielle expliihre Lösunger	9	161 -
	pulverbedarf (5I-Löschmittelbehälter mit Doppelventil, je 4 kg Ammonphosphat-Löschpulver, p_{N2} = 120 bar, Pulveraustrag über Fächerdüse)	144
Tabelle 3.36.	Wirksamkeit einer Löschmittelsperre im Bereich des Silodaches auf die maximalen Explosionskenngrös- sen von Maisstärke in Optimalkonzentration	149
Tabelle 3.37.	Brennbare Stäube: Mindestanzahl der erforderlichen Löschmittelvorratsbehälter für Löschmittelsperren (Sperre: 10. Leitungsmeter, Flammenmelder: 1. Leitungsmeter)	156
Tabelle 3.38.	Methan/Propan: Mindestanzahl der erforderlichen Löschmittelvorratsbehälter für Löschmittelsperren (Sperre: 10. Leitungsmeter, Flammenmelder: 1. Leitungsmeter; Gemische in ruhendem Zustand entzündet)	157
Tabelle 3.39.	Maximaler Explosionsüberdruck p _{max} und maximale Explosionsgeschwindigkeit v _{max} brennbarer Stäube im Elevator bei aktiven Löschmittelsperren (Zündort: 15. Schachtrohrmeter, Gurtgeschwindigkeit 3.5 m/s)	162
Tabelle 3.40.	Maximaler Explosionsüberdruck p_{max} und maximale Explosionsgeschwindigkeit v_{max} brennbarer Stäube im Elevator ohne und mit Löschmittelsperre	163
Tabelle 3.41.	Explosionsschutzventil Ventex DN 200: Durchschnittliche Schliesszeit $t_{s,m}$ bei waagerechter Anordnung in pneumatischer Ring-Förderleitung DN 200 (Maisstärke, $v_F = 20 \text{ m/s}$)	173
Tabelle 3.42.	Schliesszeiten t_s fremdbetätigter Explosionsschutzventile-Ventex (p_{N2} = 120 bar)	175
Tabelle 3.43:	Flammenlaufzeiten t und Abstände L zwischen Detektor und Entkopplungseinrichtung für:	209
Tabelle 3.44:	Berechneter Abstand L zwischen Entkopplungseinrichtung und Übergang Behälter/Rohr bei Druckdetektorbetätigung (p _A = 0.1 bar) für	214
-	κplosionstechnische Problemstellungen und ösungen	k
Tabelle 4.1:	Einfluss eines Kanals über der Luftansaugöffnung einer Mühle (V = 0,024 m³) auf die Explosionskenngrössen von Propan	20
Tabelle 4.2.	Reduzierte maximale Explosionskenngrössen brennbarer Stäube in der HS Mahlanlage (Koh-	

	lenstaubrohre verschlossen, Entlastung DN 400 im Fallschachtbereich)	26
Tabelle 4.3:	Untere Explosionsgrenze UEG und Explosionskenngrössen von Farbstoff-Feinstaub bei Betriebsbedingungen im 220 I-Industriestaubsauger bei verschiedenen Zündquellen ($p_{max} = 9.4$ bar, $K_{St} = 290$ bar·m·s ⁻¹)	54
Tabelle 4.4:	Reduzierter maximaler Explosionsüberdruck p _{red,max} in Maschinenteil und Container in Abhängigkeit von Staubexplosionsklasse und Zündort	59
Tabelle 4.5:	Reduzierter Explosionsüberdruck p_{red} innerhalb und Flammenstanddauern t_{F1} ausserhalb der Müllzerkleinerungsanlage von brennbaren Stäuben (V = 47 m³, Sperrenanordnung gemäss Abb. 4.58, Ansprechdruck Detektor p_A =0.1 bar)	64
Tabelle 4.6:	Mindestzündenergie MZE von transparenten Kunst- stoff-Beschichtungspulvern(Kondensatorentladung)	66
Tabelle 4.7:	Wirbelschichtanlagen: Einfluss von Bauform, Druckstossfestigkeit p_D , Anordnung der Entlastung, Abblasrohrlänge I und Explosionsart auf den Faktor f	82
Tabelle 4.8:	K-Faktoren für die Bestimmung der Anzahl z der Löschmittelbehälter, abhängig vom Brennstoff	85
Tabelle 4.9:	Nachentstauber mit Produktfilter: Maximale Explosionskenngrössen inhomogener Staubwolken im Vergleich zu anderen Messergebnissen	94
Tabelle 4.10:	Maximale Explosionskenngrössen in einer geschlossenen Wirbelschichtanlage mit Produktfilter	95
Tabelle 4.11:	Maximale Explosionskenngrössen der untersuchten Produkte im Einzelbehälter	96
Tabelle 4.12:	Maximale Explosionskenngrössen der Produkte gemäss Tabelle 4.1 im Verbundsystem V = 1 m $^3 \rightarrow$ V = 5 m 3 über eine 10 m lange Leitung DN 400	98
Tabelle 4.13:	Wirbelschichtanlagen WSA gemäss Abb. 4.85 über eine ca. 7 m lange Rohrleitung, DN 300 verbunden mit einem 7,1 m³-Nachentstauber NE: Maximale Explosionskenngrössen inhomogener Staubwolken	101
Tabelle 4.14:	Maximale Explosionskenngrössen inhomogener Technocel- bzw. Maisstärke/Luft-Gemische unter verschiedenen Betriebsbedingungen	102
Tabelle 4.15:	3,2 m ³ -Wirbelschichtapparatur mit Druckentlastung nach dem Produktfilter: Berechneter Zusammenhang zwischen Luftvolumenstrom Q und maximalem redu-	

Günther Pellmont

Spezielle expliihre Lösungen	9	163 -
	ziertem Explosionsüberdruck p _{red,max} bzw. zu emp- fehlende Apparatefestigkeit p	107
Tabelle 4.16:	$V = 3,2 m^3$, Druckentlastung nach dem Produktfilter ohne Stützkorb: Zusammenhang zwischen der, nach dem Normverfahren gemessenen, staubspezifischen Kenngrösse K_{St} und der Behälterfestigkeit p	108
Tabelle 4.17:	Wirbelschichtapparaturen mit Druckentlastung nach dem Produktfilter ohne Stützkorb: Flächenforderung A und Explosionsfestigkeitsforderung p aufgrund früherer Untersuchungen mit homogenen Staubwolken (1974/75: Sicherheitsregeln) und neuerer Untersuchungen mit inhomogenen Staubwolken unter Betriebsbedingungen (1990/93)	110
Tabelle 4.18:	Maximale Explosionskenngrössen von Brenngas/Luft- Gemischen in geschlossenen Behältern bei verschie- dener Turbulenz	111
Tabelle 4.19:	3,2 m³-Wirbelschichtapparatur mit Druckentlastung nach dem Produktfilter: Reduzierte maximale Explosionskenngrössen	113
Tabelle 4.20:	$V=3,2~m^3$, Druckentlastung nach dem Produktfilter ohne Stützkorb; Zusammenhang zwischen der nach dem Normverfahren gemessenen staubspezifischen Kenngrösse $K_{\text{St,hybr}}$ für hybride Gemische und der Behälterfestigkeit p	114
Tabelle 4.21:	Explosionsfestigkeit p einer entlasteten 3,2 m³-Apparatur (A = 0,5 m² = konstant) bei Vorhandensein homogener Staubwolken und Vorhandensein bzw. Nichtvorhandensein eines Produktfilters ohne Stützkorb	116
Tabelle 4.22:	Einbaulänge L der Entkopplungseinrichtung mit der Schliesszeit $t_{\rm s}$ vom optischen Detektor in Abhängigkeit von der Apparatefestigkeit p	119
Tabelle 4.23:	Einbaulänge L einer Entkopplungseinrichtung mit einer Schliesszeit von t_s = 20 ms vom Anfang des Zubzw. Abluftrohres einer Wirbelschichtanlage	121
Tabelle 4.23b:	Einbaulänge L einer Entkopplungseinrichtung mit einer Schliesszeit von $t_{\rm s}$ = 20 ms vom Anfang des Zubzw. Abluftrohres einer Wirbelschichtanlage	122
Tabelle 4.24:	Wirbelschichtapparaturen mit Druckentlastung vor und nach dem Produktfilter: Abblasrohrlänge & und Apparatefestigkeiten p mit und ohne Abblasrohr	123

Tabelle 4.25:	Wirbelschichtapparaturen mit Druckentlastung vor und nach dem Produktfilter: Abblasrohrlänge & und Apparatefestigkeiten p mit und ohne Abblasrohr	124
Tabelle 4.26:	Anzahl z der notwendigen Löschmittelbehälter für die Unterdrückung homogener Brennstoff/Luft-Gemische in der 3,2 m³ Wirbelschichtapparatur	126
Tabelle 4.27:	Geschlossene 3,2 m³-Wirbelschichtapparatur: Maximale reduzierte Explosionskenngrössen von Maisstärke bei Explosionsunterdrückung	127
Tabelle 4.28:	Einfluss der Staubwolkenart auf den k-Faktor für die Berechnung des Löschmittelbedarfs	128
Tabelle 4.29:	3,2 m³-Wirbelschichtapparatur: Maximale reduzierte Explosionskenngrössen von Propan bei Unterdrückung durch das 3/4 "-System	129
Tabelle 4.30.	Entlastungsflächen A in Abhängigkeit von Behälterfestigkeit p = $p_{red,max}$ und -volumen V ($K_G = 100 \text{ bar} \cdot \text{m} \cdot \text{s}^{-1}$, $p_{stat} = 0.1 \text{ bar}$)	135
Tabelle 4.31.	Anhebung der Behälterfestigkeit auf p = $p_{red,max}$ für Explosionsklappen in Gummiklemmprofil mit einem Ansprechdruck von p_A = 0.1 bar (vgl. Tabelle 4.30)	135
Tabelle 4.32.	Vergrösserter Flächenbedarf AKlappe für Explosions- klappen in Gummiklemmprofil mit einem Ansprech- druck von p _A = 0.1 bar (vgl. Tabelle 4.30)	136
Tabelle 4.33.	Anhebung der Behälterfestigkeit auf p = p'red.max für Abblasrohre unterschiedlicher Länge I (vgl. Tabelle 4.30)	137
Tabelle 4.34.	Mindest-Explosionsfestigkeit $p = p_{red,max}$ bei Vorgabe der Entlastungsfläche A mit Berstscheibenabschluss $(K_G = 100 \text{ bar} \cdot \text{m} \cdot \text{s}^{-1}, p_{stat} = 0.1 \text{ bar})$	138
Tabelle 4.35.	Anzahl Z der Löschmittelbehälter für die Unterdrückung von Propanexplosionen in kubischen Behältern in Abhängigkeit vom zu schützenden Behältervolumen V und Unterdrückungssystem ($p_A = 0.1$ bar, $p_{red,max}$ £ 1 bar)	138
Tabelle 4.36.	Entlastungsflächen A für die Staubexplosionsklassen St1 und St2 in Abhängigkeit von Behälterfestigkeit p = $p_{red,max}$ und -volumen V ($p_{max} = 9$ bar, $p_{stat} = 0.1$ bar)	140
Tabelle 4.37.	Anhebung der Behälterfestigkeit auf $p = p_{red,max}$ für Explosionsklappen mit einem Ansprechdruck von $p_A = 0.08$ bar (vgl. Tabelle 4.36)	141

Tabelle 1.

Tabelle 4.38.	Vergrösserter Flächenbedarf AKlappe für Explosions- klappen mit einem Ansprechdruck von $p_A = 0,08$ bar (vgl. Tabelle 4.36)	141
Tabelle 4.39.	Anhebung der Behälterfestigkeit auf $p = p_{red,max}$ für Abblasrohre unterschiedlicher Länge I (vgl. Tabelle 4.36)	142
Tabelle 4.40.	Anhebung der Behälterfestigkeit auf p = $p_{red,max}$ für 2fach-Bandsicherungen (Dreieckhöhe 0,7 mm), denen maximal 6 m lange Abblasrohre nachgesetzt sind (vgl. Tabelle 4.36)	143
Tabelle 4.41.	Mindestexplosionsfestigkeit p = $p_{red,max}$, bei Vorgabe der Entlastungsfläche A mit Berstscheibenabschluss (K_{St} = 300 bar·m·s ⁻¹ , p_{max} = 9 bar, p_{stat} = 0.1 bar)	144
Tabelle 4.42.	Entlastungsflächen A für die Staubexplosionsklasse St1 in Abhängigkeit von Behälterfestigkeit p = $p_{red,max}$ - volumen V und Förderrohrdurchmesser D_F ($p_{max} \le 9$ bar, $p_{stat} = 0.1$ bar)	145
Tabelle 4.43.	Faktoren für die Berechnung des Abblasrohreinflusses auf die Anhebung des reduzierten maximalen Explosionsüberdrucks p _{red,max} im zu schützenden Behälter	146
Tabelle 4.44.	Anhebung der Behälterfestigkeit auf $p = p_{red,max}$ durch lange Abblasrohre ($l \ge 6$ m) (vgl. Tabelle 4.42)	146
Tabelle 4.45.	Entlastungsflächen A für ein 100 m^3 -Silo in Abhängigkeit von Silofestigkeit p = $p_{\text{red},\text{max}}$, verschiedenem H/D-Verhältnis und Staubexplosionsklasse ($p_{\text{max}} = 9$ bar, $p_{\text{stat}} = 0.1$ bar)	148
Tabelle 4.46.	Anhebung der Silofestigkeit auf p = $p_{red,max}$ für 2fach- Bandsicherungen (Dreieckhöhe: 0,9 mm) (Flächenan- gaben s. Tabelle 4.45)	148
Tabelle 4.47.	Entlastungsflächen A für die Staubexplosionsklasse St1 und ein 100 m ³ -Silo in Abhängigkeit von der Silofestigkeit p = $p_{red,max}$ und verschiedenem H/D-Verhältnis (p_{max} = 9 bar, p_{stat} = 0.1 bar)	149
Tabelle 4.48.	Anzahl der Löschmittelbehälter für die Unterdrückung von Produkten der Staubexplosionsklassen St1 und St2 in kubischen Behältern in Abhängigkeit vom zu schützenden Behältervolumen V und Unterdrückungssystem ($p_A = 0.1$ bar, $p_{red,max} \le 1$ bar)	151
Zusamment	fassung	

Entwicklung des Nachweises der Explosionsfähigkeit brennbarer Stäube

9

Tabelle 2.	Staubexplosionen 1785 - 1887	10
Tabelle 3.	Explosionskenngrössen brennbarer Feinstäube (Normverfahren)	21
Tabelle 4.	Zusammenhang zwischen $t_{\rm s}$ -Wert und Staubexplosionsklasse	22
Tabelle 1.	Mindestzündenergie MZE und Explosionskenngrössen brennbarer Staube	31
Tabelle 5.	Mindestzündenergie und Explosionskenngrössen von Flock	34
Tabelle 6.	Sauerstoff-Grenzkonzentration SGK brennbarer Stäube	45
Tabelle 7.	Temperaturkoeffizient der Sauerstoff-Grenzkonzentration SGK von brennbaren Stäuben in Abhängigkeit vom Inertgas	47
Tabelle 8.	Elektrostatische Entladungensarten, umgesetzte Energie und Massnahmen gegen das Entstehen sol- cher Entladungen	66
Tabelle 9.	Einfluss der Staubwolkenart auf die Explosionskenn- grössen im geschlossenen Behälter (E = 10 kJ)	86
Tabelle 10:	Prüfprogramm für verschiedene Unterdrückungssysteme und Ergebnisse	100
Tabelle 11:	Wirksamkeit einer Löschmittelsperre im Bereich des Silodaches auf die maximalen Explosionskenngrös- sen von Maisstärke in Optimalkonzentration	108
Tabelle 12:	Druckentlastungsfläche A für Trockner und Granulatoren mit dem Volumen V bei Druckentlastung vor dem Filter	120
Tabelle 13:	Druckentlastungsfläche A für Trockner und Granulatoren mit dem Volumen V bei Druckentlastung vor dem Filter	120
Tabelle 14:	Maximale Explosionskenngrössen brennbarer Stäube im Verbundsystem V = 1 m $^3 \rightarrow$ V = 5 m 3 über eine 10 m lange Leitung DN 400	131
Tabelle 15:	Wirbelschichtanlagen WSA gemäss Abb. 5.150 über eine ca. 7 m lange Rohrleitung, DN 300 verbunden mit einem 7.1 m³-Nachentstauber NE: Maximale Explosionskenngrössen inhomogener Staubwolken	133
Tabelle 16:	Maximale Explosionskenngrössen inhomogener Staubwolken von Maisstärke bzw. Technocel im Ver- bundsystem Wirbelschichttrockner (WST) Na- chentstauber (NE) gemäss Abb. 28:	134

Tabelle 17:	V = 3.2m ³ , Druckentlastung nach dem Produktfilter ohne Stützkorb: Zusammenhang zwischen der nach dem Normverfahren gemessenen staubspezifischen Kenngrösse K St und der Behälterfestigkeit p	136
Tabelle 18:	$V = 3.2 m^3$, Druckentlastung nach dem Produktfilter ohne Stützkorb über Abblasrohr (I = Is): Apparatefestigkeit p' als Funktion des K_{St} -Wertes	140
Tabelle 19:	Geschlossene 3.2m³-Wirbelschichtapparatur: Maximale reduzierte Explosionskenngrössen von Maisstärke bei Explosionsunterdrückung	140
Tabelle 20:	3.2m³-Wirbelschichtapparatur: Maximale reduzierte Explosionskenngrössen von Propan bei Explosionsunterdrückung durch das ³⁄4"-System	141
Tabelle 21:	Einbaulänge L der Entkopplungseinrichtung mit der Schliesszeit t _S vom optischen Detektor in Abhängigkeit von der Apparatefestigkeit p	143
Tabelle 22:	Einbaulänge L der Entkopplungseinrichtung mit der Schliesszeit von $t_{\rm S}$ = 20 ms vom Anfang des Zu- bzw. Abluftrohres einer Wirbelschichtanlage	144
Tabelle 23:	Einbaulänge L der Entkopplungseinrichtung mit der Schliesszeit von t _s = 20 ms vom Anfang des Zu- bzw. Abluftrohres einer Wirbelschichtanlage	144
Tabelle 24:	Wirbelschichtapparaturen mit Druckentlastung nach dem Produktfilter ohne Stützkorb: Flächenforderung F und Explosionsfestigkeitsforderungen p aufgrund früherer Untersuchungen mit homogenen Staubwolken (1974/75: Sicherheitsregeln) und neuerer Untersuchungen mit inhomogenen Staubwolken unter Beticke bereitste des (2006)	445
	triebsbedingungen (1990/93)	145

11.4 Gleichungs-Verzeichnis

Sicherheitstechnische Kenngrössen und Messverfahren

der Alkane: $\frac{1}{UEG} = 0.1267 (n - 1) + 0.2 \text{ [Voll%-1]}, (1)$	22
der Alkohole/Olefine: $\frac{1}{UEG} = 0.136 (n-1) + 0.15 \text{ [Voll%-1]}, (2)$	23
EG $[g/m^3] = 0.416 \cdot MG \cdot EG \text{ [Voil \%]}$ (3)	23
T _{F,m} = 926°C ± 12% (4)	24
$UEG(T) = UEG(25^{\circ}C) \left[1 - \frac{1}{T_{F,m} - 25} (T - 25) \right]$ (5)	24
$UEG(T) = UEG(25^{\circ}C)[1 - 0,0011(T - 25)] \text{ in } [^{\circ}C]$ (6)	24
$OEG(T) = OEG(25^{\circ}C)[1 + 0.011(T - 25)] \text{ in } [^{\circ}C]$ (7)	25
$EG = \frac{100}{\sum (n_i / EG_i)}$ in [Voll%], (8)	25
Flp = f (p,T); (9)	28
Flammpt*C (korr.)=	32
Flammof:C(gemessen)	J2
(dp/dt) _{max} ·V ^{1/3} = konst. = Kg (12)	37
für Kugelvolumina:	39
$p_{\text{max}} = -0.0146 * \frac{O}{V} + 8.32 \text{ [bar] für V} \ge 250\text{m}^3$ (13)	39
für zylindrische Volumina:	39
$p_{\text{max}} = -0.0146 * \frac{O}{V} + 7.95 \text{ [bar] für V} \le 10 \text{m}^3$ (14)	39
$p_{\text{maxJ}} = p_{\text{max,RT}} * (0.7143 * \frac{T_{\text{RT}}}{T} + 0.286) \text{ in bar} $ (15)	42
$p_{max,M} = x \cdot p_{max,1} + y \cdot p_{max,2}$ (16)	52
- Mischung mit Luft: p _{max} = 0.49 · n + 6.4	55
- Mischung mit Sauerstoff: pmax = 2.55 · n + 13.0 (17)	55
- Mischung mit Luft: p _{max} = 8.9 bar und für	56
- Mischung mit Sauerstoff: p _{max} = 25.8 bar.	56
$C_{St} = \frac{100}{1 + 4.76(m + n/4 - o/2)}$ in Vol% (18)	62
1+4.76(m+n/4-o/2)	

Sicherheitstechnische Kenngrössen und Messverfahren - 169 -

$T_{z,2} = \frac{T_{z,1} - 75}{(\log V_1 - 15)} \cdot \log V_2 + \left[75 - \frac{(T_{z,1} - 75)}{(\log V_1 - 15)} \cdot 15 \right] \text{ in } [^{\circ}C] (19) \dots71$
$\frac{\text{max. Abbrennges chwindigkeit der Prüfmischung (mm/s.)}}{\text{max. Abbrenngeschwindigkeit der Referenzmischung (mm/s.)}} = Q (20)84$
max. Abbrenngeschwindigkeit der Referenzmischung (mm/s.)
$\frac{p \cdot V}{T} = \text{konstant, resp.} \frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2} \text{(21)}104$
$E_A = -\frac{\ln(Q_1/Q_2) \cdot R}{(1/T_1) - (1/T_2)} \text{ [J/mol]} (22)$
$TMR_{ad} = \frac{T_0^2 \cdot C_p \cdot R}{Q_0 \cdot E_A} \text{ [s]} (23) \dots 114$ $UEG(T) = UEG(T_0) \cdot \left[1 - 0.0027(T - T_0)\right] \text{ in g·m-3} \textbf{(24)} \dots 153$
$UEG(T) = UEG(T_0) \cdot \left[1 - 0.0027(T - T_0)\right] \text{ in g·m-}^{3} \textbf{(24)}153$
$UEG = A + \frac{B}{H_0}$ (25)
(dp/dt) _{max} ·V¹¹³ = konst. = K _{St} [bar·m·s⁻¹] (26) 156 T _{max} = 242·p _{max} [°C] (27) 169 T _{max} = 289·p _{max} [°C] (27') 169 T _{max} = 266·p _{max} [°C] (27") 170
Glarner: $p_{\text{max, }T} = p_{\text{max, }Rt} \left(0.88 \cdot \frac{T_{Rt}}{T} + 0.12 \right) \text{ [bar] (28)} \dots 175$
Wiemann: $p_{\max, T} = p_{\max, Rt} \left(0.91 \cdot \frac{T_{Rt}}{T} + 0.09 \right) \text{ [bar] (28')} \dots 175$
${\rm V = 1m^3 \rightarrow V = 5m^3;} \ K_{St} = 2.15 \cdot \nu_{\rm max}^{0.796} \ [\rm bar \cdot m \cdot s^{-1}] \ (29) \ldots 183$
$V = 5m^3 \rightarrow V = 1m^3$, $K_{St} = 4.32 \cdot v_{max}^{0.630} \text{ [bar·m·s-1]}$
$p_{\text{max}} = a \cdot 10^3 \cdot \frac{P_{v}}{T} \cdot \left[\frac{Y_{(O_2)} - \frac{b}{T}}{0.21 - \frac{b}{T}} \right]^n$ [bar] (30)
n = 0.06113·pmax,T[bar] (31)

$$\begin{split} p_{\text{max}} &= a \cdot 10^3 \cdot \frac{P_{\text{v}}}{T} \cdot \left[\frac{Y_{(O_2)} - \frac{SGK}{100}}{0.21 - \frac{SGK}{100}} \right]^n \\ K_{St} &= x \cdot c_{O_2} - y \cdot 10^6 \cdot T^{-z} \text{ [bar·m·s-1]} \quad (33) \\ C_{O_2} &= \frac{273}{T} \cdot Y_{(O_2)} \cdot \frac{P_{\text{v}}}{22.4} \text{ [mol·l-1]} \quad (34) \\ \text{Kst} &= 125.8 \cdot \text{V}^{-0.5} \text{ [bar·m·s^-1]} \quad (35) \\ \text{MZE} &\approx \text{M}^{2.035} \text{ [mJ]} \quad (36) \\ \text{MZE} &= 6.51 \cdot 10^{-14} \cdot t_{2,\text{min}}^{8.0932} \quad (37) \\ \text{MZE} &= 1.558 \cdot 10^{-12} \cdot t_{2,\text{min}}^{5.574} \quad (38) \\ \text{MZE} &= 4.86 \cdot 10^{-16} \cdot t_{2,\text{min}}^{9.688} \quad (39) \\ \text{MZE}(T) &= a \cdot \text{MZE}(20^\circ \text{C})^b \quad (40) \\ \text{Z}_{Z,EAM} &= 0.93 \cdot T_{Z,GG} \text{ bzw.} \quad (41) \\ \text{MZE}_{h} &= \text{MZE}_{St} \cdot \left[\frac{\text{MZE}_{Br}}{\text{MZE}_{St}} \right]^{\frac{C_{Br}}{c_{w.Sr}}} \text{[mJ]} \quad (42) \\ \text{max} &= 0.0135 \cdot \text{v}_{\text{max}} \quad [\text{bar]} \quad (43) \\ \text{K}_{\text{St}} &\leq K_{St,Gr} = 181.08 \cdot (1-21.53 \cdot Q) \quad [\text{bar·m·s}^{-1}] \quad (45) \\ &= 300 \end{aligned}$$

Vorbeugender Explosionsschutz

$SGK = 5 \cdot \log \cdot MZE \cdot \frac{T_Z + 273}{273}$ [Vol%] (2.1)	26
$SGK_{(T)} = SGK_{(25^{\circ}C)} 9.8 \cdot 10^{-3} \cdot (T - 25)$ [Vol%] für T < 300°C	(2.2) 28
$StGK_{max} = 0.16 \cdot T + 29 \text{ [Vol\%]}$ (2.3)	
$SGK_T = SGK_{RT} - \alpha \cdot (T - RT)$ [Vol%O2] (2.4)	39
$SGK = -2.23 \cdot \log \cdot E + b$ [Vol%] (2.5)	
$b = 20.8 + 2.23 \cdot \log \cdot MZE'$ (2.6)	
$SGK = -1.72 \cdot \log \cdot E + b$ [Vol%] (2.7)	52
$b = 20.8 + 1.72 \cdot \log \cdot MZE$ (2.8)	52
$SGK = 2 \cdot \log \cdot MZE \cdot \frac{T_Z + 273}{273} + 13.2 \text{ [Vol\%]}$ (2.9)	54
$SGK = 2 \cdot \log \cdot MZE \cdot \frac{T_Z + 273}{273} + 10.7 \text{ [Vol\%]}$ (2.10)	54
$SGK = 2 \cdot \log \cdot MZE \cdot \frac{T_Z + 273}{273} + 18.4 \text{ [Vol\%] für E} = 10 \text{ J}$ (2.11) 55
$O_{2,Gr} = 2.55 \cdot \log E + b$ [Vol%] (2.12)	56
$b = O_{2,Gr} + 2.55 \cdot \log E \text{ [Vol\%]}$ (2.13)	56
$MZE = e^{-0.902(b-20.8)}$ [J (2.14)	56
$SGK_T = SGK_{RT} - \alpha \cdot (T - RT)$ [Vol%] (2.15)	61
$SGK_{CO_2} = 1.9 \cdot SGK_{N_2}$ [Vol%] (2.16)	
Stahl-Schlagfunken: $E_{\vec{A}} = e^{-0.0136T_z + 5.0238}$ [mJ] (2.17)	
Stahl-Schleiffunken: $E_{\vec{A}} = e^{-0.0334T_z + 15.035}$ [mJ] (2.18)	
Stahl-Reibfunken: $E_{\vec{A}} = e^{-0.0351T_z + 18.482}$ [mJ] (2.19)	
$E = \frac{1}{2} \cdot C \cdot U^2$ (2.20)	132

Konstruktiver Explosionsschutz 1

explosionsdruckstossfest = 1,5 x explosionsdruckfest. (3.1)	11
$p_{stat} = \frac{d \cdot \delta_B}{D} = \frac{K}{D} \text{ [bar]} $ (3.2)	36
$p_{stat} = \frac{0.136}{D}$ [bar] (3.3)	38
$p_{stat} = \frac{K}{D} = \frac{0.071}{D}$ [bar] (3.4)	44
$E_F = \frac{A_W \cdot 100}{A_F}$ [%] (3.5)	45
$p = p'_{red,max} = 1.245 \cdot p_{red,max}^{0.378}$ für pred,max ≤ 1.5 [bar] (3.6)	46
$p = p'_{red,max} = 1.52 \cdot p_{red,max}^{0.375}$ für pred,max ≤ 2 [bar] (3.7)	46
$p_{red,max} = 0.56 \cdot p^{2.65} \text{ für p} \le 1.5 \text{ [bar]}$ (3.8)	46
$p_{red,max} = 0.327 \cdot p^{2.67} \text{ für p } \le 2 \text{ [bar]}$ (3.9)	
$A = 0.333 \cdot p_{red,max}^{-0.569}$ für p _{stat} = 0.1 [bar] (3.10)	
$p = p'_{red,max} = 1.74 \cdot p'_{red,max}$ [bar] (3.11)	
$p_{red,max} = 0.49 \cdot p^{1.287} \text{ [bar]}$ (3.12)	
$A = f(p_{red, max} \cong p) \text{ [m}^2\text{]}$ (3.13)	
$p = p'_{red,max} = a \cdot p_{red,max}^{b} \text{ [bar]} $ (3.14)	
$p_{red,max} = \left[\frac{1}{a}\right]^{\frac{1}{b}} \cdot p^{\frac{1}{b}} \text{ [bar]} (3.15) \dots$	52
$F_R = \alpha \cdot 100 \cdot A \cdot p_{red,max} \text{ [KN]} $ (3.16)	54
$b = \frac{F_R}{F_{R,\text{max}}} \qquad (3.17)$	56
$F_R \cong 0.52 \cdot 119 \cdot A \cdot p_{red,max} \cong 0.62 \cdot A \cdot p_{red,max}$ [KN] (3.18)	56
$p_{dyn} = (-0.025 \cdot A + 0.053) \cdot d + 0.022 \cdot A - 0.047$ [bar] (3.19)	
$p_{dyn} = (-0.0357 \cdot A + 0.09) \cdot d + 0.058 \cdot A - 0.134 \text{ [bar]}$ (3.20)	

$F = m \cdot K_{St} \text{ [m}^2\text{]}97$
$m = 2.9 \cdot 10^{-4} p_{red, max}^{-0.569} .97$
$F = 2.9 \cdot 10^{-4} \cdot p_{red,max}^{-0.569} \cdot K_{St} [m^2] $ (3.40)
$A = (3.264 \cdot 10^{-5} \cdot p_{\text{max}} \cdot K_{St} \cdot p_{\text{red,max}}^{-0.569}) \cdot V^{0.753} \text{ [m²]} (3.41) \dots 97$
$p = p_{red,max} = 1.3 \cdot 10^{-8} \cdot \left[\frac{p_{max} \cdot K_{St}}{F} \right]^{1.7575} \cdot V^{1.146} \text{ [bar]} (3.42) \dots 100$
$p'_{red,max} = (\log BG - 1) \cdot p_{red,max}$ [bar] (3.42)
$\Delta A = 0.27 \cdot p_{red max}^{-0.5} \cdot (p_{stat} - 0.1)_{r=-21}$ (2.42)
$\frac{p'_{red,max}}{p_{red,max}} = 1 + m \cdot \frac{\ell}{D} $ (3.45)
$A' = \frac{A}{V^{0.753}}$ $p'_{red,max} = p_{red,max} (1 + 17.3 \cdot [A \cdot V^{0.753}]^{1.6} \cdot \ell \text{ [bar]} (3.47) \dots 109$ $\ell_s = 3.764 \cdot p_{red,max}^{-0.3724} (3.48) \dots 111$
$p'_{red max} = p_{red max} (1 + 17.3 \cdot [A \cdot V^{0.753}]^{1.6} \cdot \ell \text{ [bar]} $ (3.47)
$\ell_s = 3.764 \cdot p_{red, max}^{-0.3724}$ (3.48)
$\ell_s = 3,764 \cdot p_{red,max} (3.48) $
$p'_{red,mas} = 0.294 \cdot p_{red,max}^{0.9417}$ [bar] (3.50)
$p_{red,max} = 8.3 \cdot 10^{-4} \cdot K_{St}^{1.055} \cdot A^{-0.725} \cdot p_{v} [bar]$ (3.51)
$\left(\frac{dp}{dt}\right)_{red,max} = 0.01 \cdot K_{St}^{13} \cdot A^{-0.58} \cdot p_v \text{ [bar·s-1]} $ (3.52)
$A = \left[\frac{1.205 \cdot 10^{3} \cdot K_{St}^{-1.053} \cdot p_{red,max}}{p_{v}}\right]^{-1.379} $ [m ²] (3.53)
$A = 1.47 \cdot 10^{-4} \cdot K_{St}^{1.45} \text{ [m^2]}$
$D_Z = \sqrt[3]{\frac{4 \cdot V}{\pi}}$ [m] (3.54)
$A = (a \cdot \log p_{red, \max} - b) \cdot \frac{4}{D_z} - c \log p_{red, \max} + d \text{ [m^2]} $ (3.55)

$$A = \left[(2.15 \cdot \log p_{red,max} - 1.5) \cdot \frac{4}{D_z} - 5.5 \log p_{red,max} + 3.7 \right] \cdot 10^{-3} \cdot K_{so} \text{ [m}^2] \quad (3.56)$$

$$A = \left[(8.6 \cdot \log p_{red,max} - 6) \cdot \frac{1}{D_z} - 5.5 \log p_{red,max} + 3.7 \right] \cdot 0.011 \cdot K_{so} \cdot D_F \text{ [m}^2]$$

$$\frac{p'_{red,max}}{p_{red,max}} = 1 + \left[p_{red,max}^{0.569} \cdot \left(0.1834 - 0.22 \cdot \frac{1}{D_z} \right) \cdot \frac{\ell}{D} \right] \quad (3.58) \dots 132$$

$$\frac{p'_{red,max}}{p_{red,max}} = 1 + \left[p_{red,max}^{-1.5436} \cdot \left(0.0808 - 0.10 \cdot \frac{1}{D_z} \right) \cdot \frac{\ell}{D} \right] \quad (3.59) \dots 132$$

$$\Delta A = (-430.5 \log p_{red,max} + 75.8 \log H / D \text{ [%]} \quad (3.60) \dots 143$$

$$A_L = A + A \cdot (-430.5 \log p_{red,max} + 75.8) \log H / D \text{ [m]} \quad (3.61) \dots 144$$

$$p'_{red,max} = (0.0586 \cdot \ell + 1.023) \cdot p_{red,max}^{0.981-0.01907 \cdot \ell} \text{ [bar]} \quad (3.63) \dots 147$$

$$p'_{red,max,Silo} = \frac{p'_{red,max,H/D-1} - p'_{red,max,H/D-5}}{5} \left(1 - \frac{H}{D} \right) + p'_{red,max,H/D-1}$$

$$[bar]$$

$$4 \times \Delta A = 107.15 \cdot \log p_{p-1.27}^{-1.27} \cdot \log(H / D) \text{ [m]} \quad (3.65) \dots 156$$

$$A_L = A + \Delta A \text{ [m}^2] \dots 157$$

$$A_L = A \cdot (1 + 1.0715 \cdot p_{p-1.07}^{-1.27} \cdot \log(H / D)) \text{ [m}^2] \quad (3.66) \dots 157$$

$$a = 0.1073 \cdot (H - 10) + 1$$

$$a = 0.1 \cdot (H - 10) + 1 = 0.1 \cdot H$$

$$A = \left[(8.6 \cdot \log p_{red,max} - 6) \cdot \frac{1}{D_z} - 5.5 \log p_{red,max} + 3.7 \right] \cdot 0.0011 \cdot K_{si} \cdot H \cdot D_F \text{ [m}^2] \quad (3.67)$$

$$A_L = A + \Delta A \text{ [m}^2] \dots 160$$

$$A_L = A \cdot \Delta A \text{ [m}^2] \dots 160$$

$A = \frac{\beta \cdot L_1 \cdot L_2}{\sqrt{p_{bem}}} \text{ [m}^2 \text{] (3.68)}$
$A = (3.264 \cdot 10^{-5} \cdot p_{\text{max}} \cdot K_{St} \cdot p_{bem}^{-0.569}) \cdot V^{0.753} \text{ [m²]} (3.69) \dots 176$
$\Delta A_{H} = A \cdot (-4.305 \log p_{bem} + 0.758) \cdot \log L_{3} / D_{E} \text{ [m}^{2}\text{]} $ (3.70)
$p'_{bem} = p_{bem} \cdot \left[\frac{A}{A'}\right]^2$ [bar] (3.71)
$L_{F,H} = 8 \cdot V^{03} \text{ [m]} (3.72) \dots 180$
$L_{F,I} = 15.11 \cdot V^{-0.25} \text{ [m]} (3.73)$
$L_{C_2H_3} = 3.1 \cdot V^{0.402} \text{ [m]} (3.74) \dots 181$
$p_{\text{max},a} = 0.2 \cdot p_{\text{red,max}} \cdot A^{0.1} \cdot V^{0.18} \text{ [bar]} $ (3.72)
$p_r = p_{\max, a} \cdot \left[\frac{R_s}{r} \right]^{13}$ [bar] (3.73)
$p_{\text{max}, a} = 1.771 \cdot 10^3 \cdot \left[MZE \cdot \frac{T_Z + 273}{273} \right]^{-0.8574}$ [bar] (3.74) 186
$S_{L,\text{max}} = 0.9276 \cdot \left[MZE \cdot \frac{T_Z + 273}{273} \right]^{-0.2269} \text{ [m·s·¹]} $ (3.75)
$MZE \cdot \frac{T_Z + 273}{273} = 0.718 \cdot S_{L,max}^{-4.407} [mJ]$ (3.76)
$p_{\text{max}, a} = 2353 \cdot S_{L, \text{max}}^{3,779} [\text{mJ}]$ (3.77)
$p_{\text{max},a} = 56.3 \cdot V^{0.1676} \text{ [mbar]} $ (3.78)
$p_{\text{max},a} = 121.11 \cdot V^{0.1418}$ [mbar] (3.79) 191
$p_{\text{max},a} = 30.8 \cdot V^{0.1444}$ [mbar] (3.80)
$V \le 25 \text{m}^{\text{s}}$: $R_{\text{S}} = 2.63 \cdot V^{0.414}$ [m] und für (3.81)
V ≥ 25m ^a : Rs =10m = konstant (3.82)

Günther Pellmont

Konstruktiver Explosionsschutz 1

- 177 -

$R_S = 0.25 \cdot L_{F,H} = 2 \cdot V^{\frac{1}{3}}$ [m] (3.83)	197
$p_r = p_{\max, a} \cdot \left[\frac{R_s}{r} \right]^x \text{ [bar]} (3.84) \dots$	197
$x = 1.579 \cdot V^{0.0428} \tag{3.85}$	199
$p_{\text{max},a} \cong 65.9 \cdot \sum A \text{ [mbar]} (3.86)$	203
$p_{\text{max, }a} = f_{(MZE.\frac{T_z + 273}{273})}$ [mbar] (3.87)	205
$P_{\max,a} = f_{(S_{I,\max}) \text{ [mbar]}} (3.88)$	205

Konstruktiver Explosionsschutz 2

$z = k \cdot V^{2/3} $ (3.89)
$z = 0, 2 \cdot V^{0,5}$ (3.90)
$z \sim 0.3 \cdot V^{0.5}$ (3.91)
$MZE = 0.5 \cdot C \cdot U^2 = 0.85 \cdot L \cdot I_Z^2 \text{ [J]}$
$w_g = w_n = 1.01 \cdot \left[MZE \cdot \frac{T_z + 273}{273} \right]^{0.157}$ [mm](3.92)
$p = 2.31 \cdot p_{red, \mathrm{max}}^{} (\mathrm{bar}]}$ [bar] für pred, max \leq 2 bar(3.92)
$p = 3.41 \cdot p_{red, \max}^{0.3462} \text{ [bar] für pred, max} \leq 0.7 \text{ bar}(3.93)$
$p_{red, \max} = 0.128 \cdot p^{2.456}$ [bar] für pred, max ≤ 3 bar(3.94)
$p_{red, \max} = 0.0288 \cdot p^{2.889}$ [bar] für pred, max ≤ 3 bar
$p_{\text{max}} = 0.61 \cdot p_{\text{red,max}} \text{ [bar]} \tag{3.96}$
$p'_{\text{max}} = 0.108 \cdot p_{red,\text{max}} \text{ [bar]}$ (3.97)
$t = a \cdot p_{red}^{-b} \cdot L^{c} \text{ [ms]} \tag{3.98}$

$t = 10.52 \cdot p_{red}^{-0.3109} \cdot L^{0.79224}$ [ms](3.99)
203
203
$t = 31.34 \cdot p_{red}^{-0.1323} \cdot L^{0.6208} \text{ [ms]}(3.100)$
$L = \sqrt[c]{\frac{t_z}{a \cdot p_{red}^{-b}}} \text{ [ms]}(3.101)$
$L = \sqrt[5]{\frac{a \cdot p_{red}^{-b}}{n \cdot p_{red}^{-b}}} $ [ms] (3.101)
t_s [in m] (2.402)
$L = 0.7852 \cdot \sqrt{\frac{t_s}{8.55 \cdot p_{red,max}^{-0.3499}}} \text{ [in m]}(3.102)$
17857
$t = 8.55 \cdot L^{0.7852}$ [ms] bzw. $L = 0.7285 \cdot \sqrt{\frac{t_s}{8.55}}$ [m](3.103)
$t = 6.71 \cdot L^{0.7852}$ [ms] bzw. $L = 0.7285 \cdot \sqrt{\frac{t_s}{6.71}}$ [m](3.104)
$t = 6.71 \cdot L$ [ms] bzw. $L = 0.7285 \cdot \sqrt{6.71}$ [m](3.104)
$t = 3.96 \cdot L^{0.7852}$ [ms] bzw. $L = 0.7285 \cdot \sqrt{\frac{t_s}{3.96}}$ [m](3.105)
$t = 3.96 \cdot L$ [IIIS] bzw. $L = 0.7283 \cdot \sqrt{\frac{3.96}{3.96}}$ [III](3.103)
$t_A = 1096 \cdot p_{\text{ex}}^{-0.3581} \text{ [ms]}(3.106)$
212
$t_{FI} \cong 32.7 \cdot \sqrt[3]{V}$ [ms](3.107)
(3.107)
(ta+ts)-tri = Δt negativ,(3.108)
214
214
Δt
$L = 0.7285 \sqrt{\frac{\Delta t}{8.55 \cdot p_{\text{ex}}^{-0.3499}}} \text{ [m]}(3.110)$

Spezielle explosionstechnische Problemstellungen und ihre Lösungen